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Stability of Bounded Solutions of Linear Functional 
Equations 

By Joel N. Franklin 

Abstract. The weak sequential compactness of reflexive Banach spaces is used to explain 
the fact that certain ill-posed, linear problems become well-posed if the solutions are required 
to satisfy a prescribed bound. Applications are made to the computability of solutions 
of ill-posed problems associated with elliptic and parabolic partial differential equations. 

1. Introduction. In defining the concept of a well-posed problem, J. Hadamard 
[1] recognized that the existence and the uniqueness of the solution are not enough 
to ensure the computability of the solution. Numerical computation requires that the 
solution have stability, or continuous dependence on the data. 

F. John [2], [3], [4] and other authors have shown that, for certain problems 
whose solutions have existence and uniqueness but not stability, if the solutions 
considered are required to satisfy a prescribed bound, stability results. An extensive 
bibliography appears in the paper [5] by L. E. Payne. All these results depend on 
precise definitions of "continuous dependence on data" which are suitable for the 
particular problems discussed. Much of the work preceding the present paper contains 
not merely qualitative statements of stability, but quantitative inequalities satisfied 
in particular problems. 

The present paper contains only the qualitative observation that an elementary 
result, Theorem 1, on the weak topology of reflexive Banach spaces yields the stability 
of uniformly bounded solutions of a large class of linear functional equations. Several 
new applications are made, including a theorem on the stability of solutions of the 
final-value problem corresponding to the general initial-value problem discussed 
in the book [6] by R. D. Richtmyer. 

2. Notation and Review. We shall use the letter T to stand for a bounded linear 
operator mapping a Banach space B1 into a Banach space B2. We suppose that the 
range TB1 is dense in B2, and that Tz = 0 only if z 0. 

If B is a Banach space, the notation B* represents the conjugate Banach space of 
bounded linear functionals f mapping B into the real numbers. If x E B and f E B*, 
the notation (x, f) represents the number which results when f is applied to x. If 
B** = B, the space B is called reflexive [7]. Gilbert spaces are reflexive Banach spaces. 
If 1 < p < D, the space L' of measurable functions x(t) for which 
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is reflexive. In fact, (LV)* - La if I/p + l/q = 1. However, the Banach space C 
of continuous functions under the maximum-norm is not reflexive. 

If {xn) is a sequence of B, we say that it converges, or converges strongly, to 
x if 

l Xn - xi I -O 0 as n -* o ; we then write Xn -* X. We say that xR converges weakly 
to x if, for each f in B*, (Xn, f) tends to the limit (x, j) as n -a c; we then write 
Xn __x. A convergent sequence is weakly convergent, but the converse is false. 

If g lies in the range of T, the equation 

(1) Tu = g 

has a unique solution, u ? B1, since we have supposed Tz = 0 only if z = 0. Now 
the question of stability is this: If Tun = gn, and if the gn tend in some sense to g, do 
the Un tend to u? 

The trivial case is that in which T has a bounded inverse, T-1. Then un -+ u if and 
only if gn -- g, and n u-u if and only if gn - g. The first assertion is obvious, and 
the second follows at once from the existence of bounded adjoint operators T* and 
(T1')*. We note that if B1 is finite-dimensional, then T does have a bounded inverse, 
since we assume that T is one-to-one, and that TB1 is dense in B2. 

If B1 is infinite-dimensional, T may lack a bounded inverse and still satisfy our 
requirements. A simple example is given by the mapping of the space, C, of con- 
tinuous functions x(r) on 0 ? r ? I into L2[0, 1] by the transformation 

Tx(r) = f x(o) da. 

Many examples are of the following form: Let B, and Bo be identical Hilbert 
spaces. Let T be a completely continuous, selfadjoint operator whose eigenvalues 
Xn are nonzero, and whose eigenvectors Vn form a basis for BP Then a bounded in- 
verse T` cannot exist; for if I Iv I I = 1, then Vn 0 and hence Xnv. = Tv, -- 0. 

3. Stability of Bounded Solutions. After proving the following general theorem, 
we will explain the need for reflexiveness, for boundedness, and for the use of weak, 
instead of strong, convergence. 

THEOREM 1. Let T be a bounded operator mapping a reflexive Banach space, B1, into 
a dense subset of a Banach space, B2. Let Tz 0 only if z = 0. Let 

(1) Tun = gn (n = 1, 2, . 

Assume that the Un are bounded: I IUnI I < #. Then gn g in B2 if and only if there is a 

point u in B1 for which Un - u, with Tu = g. 
Proof. We assert that T*B* is dense in B*. Otherwise, there would be an element 

fo in B* but not in the closure of T*B*. Using the Hahn-Banach theorem, we now 
construct a functional 4(f) for all f E B*, with 

(2) 4'(fo) F 0, but (f) = 0 for f ? T*B*2. 

Since 4D C = BA, there is a point x0 in B1 such that 

(3) i(f) _ (x0, f) for all f E B*. 

If = T*h E T*B*2, then (2) and (3) imply 

0 = 45(f) = (xo, f) = (xo, T*h) = (Txo, h). 
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Thus, 0 = (Tx,, h) for all h E B*, which implies Tx, = 0, and hence xO = 0. Now (3) 
implies 4I(f) 0 for f E B*, which contradicts the first half of (2). 

If u,, - u E B1, then Tu,, g,, -- Tii = g because, for all h E B*, 

(4) (g,, - Tu, h) = (T(u. - u), h) = (u. - u, T*h) -O. 

Conversely, assuming Tu,, converges weakly, we can show that u,, converges 
weakly. Let Tu,, -- g. Let f be given in B*. Since T*B* has been shown to be dense in 
B*, given e> O we can find a point h E B* for which I -T*hII < e. Since 

(5) (u. - Ur, I) = (T(u. - ur), h) + (u, - Ur, f - T*h) 

we deduce, for all n and m, 

(6) I(un - Urn, )1 5 I(Tun - TUr, h)I + 2fe. 

Since { TUn I converges weakly, and since e is arbitrarily small, we conclude that 
(Un- Ur,) 0 as n and m -+o . Therefore, for every f E B*, there exists a limit 

(7) L(f) = l im (Un,, f). 
n-4rn 

Now L(f) is a bounded linear functional; indeed, JILl I A, since all I1u. I I . 
Hence, L E B** = B1; and so L has a representation 

(8) L(f) (U, f) for all f E B* 

where u is some point in B1, independent of f. From (7) and (8) we conclude that 
Un - U. Finally, Tu = g because, for all h E B*2 

(Tu - g, h) = lim (Tun - g, h) = 0. 

Having proved the theorem, we will explain the need for its hypotheses. 
Univalence. If Tz = 0 for some z d 0, the theorem is false. For if x2 (-)=z, 

then xn does not tend to zero weakly (or strongly), while g, = Txn = 0. 
Reflexiveness. If we do not require B1 to be reflexive, the theorem is false. For 

example, let B1 be the space, C, of real-valued continuous functions x -6(t) defined 
forO ? < 1. Let B2 = L2[0, 1]. Let 

Tx = (rdr (O < t <1). 

Note that Tz = 0 only if z = 0. If u,, =&n(t) = cos nt, then 

gn = Tun = n sinnt -O assn co 

Moreover, the U,, are uniformly bounded: 

IlUn,,I - max Icos ntl = 1. 
OS IS 1 

But, if cI is the functional which evaluates a function &(t) for t r/4, then 

c:D(u,,) = cos(n7r/4) 

which diverges as n -a co. Hence, the sequence { u, is not weakly convergent even 
though g,, is strongly convergent. Incidentally, this example and Theorem I provide 
an independent proof that the Banach space C is not reflexive; cf. [7, p. 214]. 
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Weak convergence. If we do not use the notion of weak convergence, but use only 
strong convergence, the theorem reduces to the trivial case, in which T has a bounded 
inverse: 

Assertion. Let T be a bounded operator mapping a Banach space B1 into a dense 
subset of a Banach space B2, with Tz = 0 only if z = 0. (Here we do not need the 
assumption that B1 is reflexive.) Let T have the property that a sequence {x"} must 
converge strongly if it is bounded and if { TxI converges strongly. Then TB1 = B2, 
and T has a bounded inverse, T-1, mapping B2 into B1. 

Proof. To show TB1 = B2, let y be any point in B2. Since TB1 is assumed to be 
dense in B2, there is a sequence {x^I in B1 such that Tx, -+ y. If {x"} has a bounded 
subsequence, {x"}, the hypothesis implies that x' has a strong limit, x, and hence 
Tx = y E TB1. If {xnj has no bounded subsequence, then lx"I -| co . If xn $ 0 
for n _ N, define the points 

U2n-1 = Xnl/(Xn||, U2- = 0 for n > N. 

Since TXn -*y while I x,, lI 00, we have Tun -- 0. Since jjunjI $ 1, the hypothesis 
implies the convergence of { un}. But { un} diverges because JIu2n-1 - U2nI = L. 
Therefore, {xn} does have a bounded subsequence, and TB1 = B2. 

Hence, T has an inverse, T-F. If T-1 were not bounded, there would be a sequence 
of unit vectors, vn, for which TVn -O0. Then TXn -+0 if x21 = Vn and x2,, = 0. The 
hypothesis now implies that {xnj converges, which is impossible because I Ix2,1- 
x, I = 1. This completes the proof of the assertion. 

Boundedness. If we omit the assumption that {("} is bounded, the theorem is 
false. For example, let T be any bounded linear operator mapping a Hilbert space 
into itself, with unit eigenvectors 01, v2, ... and associated nonzero eigenvalues 
X1, X2, *.. tending to zero as n -G co. Let un = IXnj1-12Vnq Then Tun -? 0 
while I ?un I -+ oo. Since a weakly convergent sequence must be bounded, {un} is not 
weakly convergent. 

4. An Example for the Heat Equation. To show how the theorem can be used, 
we will consider the stability of the flux of heat depending upon a temperature. Con- 
sider the conduction of heat in a semi-infinite, homogeneous rod 0 < x < co in an 
interval of time 0 S t < ti. If (p(x, t) is the temperature, assume that it obeys the 
equation 

(1) t -& ax (O< x< c, 0 t :t1). 
at ax _ 

Let the temperature at x = 0 be given: 

(2) o(0, t) = g(t) (O $ t 5 t1) 

and let the unknown be the flux of heat into the end at x = 0: 

a 
(3) - so(0, t) u= (t) (0 ? t ? 1,). 

We assume the initial and boundary conditions 

(4) (p(x, 0) _ 0 and so(+ c, t)O0. 
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Define the Laplace transform 

'I(x, s) = f t e('p(x, t) dt (Re s > 0) 

and let the boundary temperature, g(t), and flux, u(t), have the transforms G(s) and 
U(s). Then the preceding equations yield 

scI(x, s) d2 (X, S) 

and 

(5) 4(x, s) = G(s) exp (-x-\s), U(s) = d (O, s) = Nls G(s). 

Since s-'I2 is the Laplace transform of (t/ir)112, the convolution theorem yields 

1 t 
(6) $-- f (t- _)"1/2u(r) dr = g(t) (0 < t < tj). 

This is an equation, Tu = g, for which we will discuss the stability of the solution, u. 
We will not use the explicit solution of the Abel integral equation (6), which is 

(7) u(t) = _ 
- j (t - T)r12g(r) dr. 

dt -\/7ro 

For the sake of definiteness, consider the example 

(8) go(t) 1, uO(t) = (7rt)-1/2 (0 t ? tl) 

The function u(t) is not square integrable, but it does lie in the reflexive Banach 
space B1 = L'[0, tj] if 1 < p < 2. We will now show that T is a bounded linear operator 
mapping L'[O, tj] into L'[O, tj]. 

Given the equation (6), with u C L', we must show that 

'9' 92g(t) dt < ao. 

From (6) we find 

(10) f g2(t) dt = f H(or, r)u(o)u(r) dor dr 

where 

(11) H(o-, r) = f [(t -r)(t _ oj-j"a dt 
IT RXu (O, 7) 

or 

(H _1 2t, - - r + 2[(t, - c_)(tl -r)] 
(12) H(u, r)=-logI-i 

Since 

0 < H(o, r) I-log 41 
Ir Ir O' 
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we have, for all q > 0, 

(13) ?7Qf 3 JH(T, r)} dodTr < Co. 

If q = (1 - p-')--Y, H6lder's inequality applied to (10) yields 

t1 / eI \~~~~~~~2/P 
(14) ft g2(t) dt ! (77I)I/a Ju(t)IP dt) < 

This completes the proof that T is bounded. 
If g(t) = 0, then the boundary-value problem (1), (2), (4) has the unique solution 

$p(x, t) 0 O. Then u(t) = -_n(O, t) = 0. Therefore, Tu = 0 only if u = 0. 
Theorem 1 now yields the following result: Let u.(t) satisfy 

(15) f lu,(t)j" dt < i (n = 1, 2, 

where ,B is a finite bound independent of n. Let {g,(t)j converge weakly in L2 to 
go(t), i.e., let 

(16) f [g.(t) - go(t)]w(t) dt -+ 0 as n -X-c 

for all w(t) C L'. Then {un(t)} converges weakly in L' to uo(t), i.e., 

(17) f [u.(t) - uo(t)]it(t) dt -+ 0 as n -X-c 

for all {(t) C L', where q = (1 - p-')-'. 
It is noteworthy that T does not have a bounded inverse, T-1, mapping L' into 

L'. To see this, let uQ(t) = cos nt. Then 

(18) g.(t) = Tu.(t) = 7 f (: - r)-1/2 cos nfr dr 

which is O(n- 12) as n -+ uniformly in t for 0 ? t _ t,. Therefore, II I -+ 0 as 
n -+ co. But, since p < 2, 

IlunIIP = fb lcos ntI" dt _ f (cos nt)2 dt - t, > 0 as n -c . 

Thus, I 1g I I 0 while I ITg,, I is bounded away from zero. 
The practical use of the weak convergence (17) is illustrated as follows. Usually 

one is not so much interested in the instantaneous flux, u(t), as in the total flux 
rto+At 

(19) F = u(:) dt 

during some nonzero time interval, to _ t ? to + At. Let 4/(t) I in this interval 
and {(t) 0 elsewhere. Then 

i'to~ r*1 

(20) F= u(t) dt = ] u(t)(t) dt. 

Since {(t) C L', the weak convergence (17) implies that F,, -+ F. as the data gn(t) 
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tends to go(t) provided that the instantaneous fluxes u"(t) are uniformly bounded in 
LP, which is the assumption (15). 

5. Application to Elasticity. Consider the biharmonic equation 

(1) ^A29 0 

in two dimensions. If p and Os/pln are prescribed on a simple closed curve, C1, and 
if P is a point in the domain, D1, enclosed by C1, then there is a formula (cf. Garabedian 
[8, p. 266]) 

(2) so(P) = A(P, Q)jp(Q) + B(P, Q) n (Q)] ds 

where A(P, Q) and B(P, Q) are analytic functions of the Cartesian coordinates of 
P in the open set D1. 

Let C2 be a simple closed curve in D1, as in the figure. 

FIGURE 1 

Suppose that so and Osp/On are prescribed on the inner curve, C2. We now inquire 
about the stability of the solution, sp, at a point, P, outside C2. We will consider only 
functions sp which solve the biharmonic equation in the larger domain, D1, and which 
satisfy on the outer curve, C1, an inequality 

f { [P(Q)]2 + [O2p(Q)/0n12} ds < ,2 

where fi is a finite number independent of so 
Let g be defined as the pair of real-valued functions p(P2), Osp(P2)/On for P2 on 

C2. Let 

(4) ugh' = f I {[sP(P2)]' + [as(PP)/on]'} 

Similarly, let u be the pair of functions sp(Q), asp(Q)/an; and define I Jlt 1h by the left- 
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hand side of (3). By using Green's formula (2) and its first derivatives, with P replaced 
by P2 on C2, one obtains an operator, T, which relates u to g: 

(5) Tu = g. 

Let B1 be the Hilbert space of pairs of functions p(Q), #(Q) which are square- 
integrable on C1. Similarly, define B2 on C2. Then Green's formula shows that T is 
a bounded linear operator mapping B1 into B,. The application of T to polynomials 
in two variables shows that TB1 is dense in B2. Moreover, Tz = 0 only if z = 0; 
for if p and O(p/On vanish on C2, then _= 0 in D2, and the analyticity of p implies 
that p =_ 0 in the larger domain, D1, so that (p and Oqo/On also vanish on C1. 

Let g1, g2, ... be a sequence of data converging weakly in B2. This will be true 
if the corresponding functions V,(P2), p,(P2), ... and their normal derivatives on 
C2 converge uniformly for P2 on C2. Less is required; since the I Ig, II have a uniform 
bound, it suffices to assume that the limit 

(6) lim f [a(P2)(k(P2) + b(P2) ] ds 
ken, c, XAn 

exists for every pair of functions, a(P,) and b(P,), chosen from a dense subset of 
L2(C2). 

Theorem I now implies the weak convergence of uk in B1, i.e., the weak con- 
vergence of the pair of functions p, cw/On on the Cartesian product L2(C1) X L2(C1). 

If, as in the figure, P is a fixed point between C2 and C1, Green's formula (2) 
represents the number p(P) as an inner product in B1; and differentiation of Green's 
formula represents all derivatives of p as inner products. Hence, the weak convergence 
of uk implies that fp and all of its derivatives converge pointwise as k a,+ c i.e., as 
the data sp, 0&p/On converge on the inner curve, C2. Of course, if P had been chosen 
inside C2, the convergence would have been an immediate consequence of Green's 
formula for the inner region, D2. 

6. Stability of Harmonic Continuation. If, in the preceding section, we had 
considered Laplace's equation, Aso = 0, instead of the biharmonic equation, using 
boundary values only for so and not for aOr/On, we would have obtained a classical 
result: If Aspk = 0 in the larger domain, D1, and if the (k are uniformly bounded 
in D1, and if the (pk converge on the inner curve, C,, then (pk and all its derivatives 
converge at points P between C2 and C1, as well as at points inside C,. 

If E is an elliptic operator of order 2k, these results generalize immediately for 
the boundary-value problem with prescribed values for (p and its normal derivatives 
of orders less than k. 

7. The Final-Value Problem. Richtmyer's book [6] discusses the initial-value 
problem 

(I) dv(t)/dt = Av(t) (O < t < t1), v(O) = U, 

where, for each t, v(t) is an element in a Banach space, B. The operator A is a linear, 
bounded or unbounded operator whose domain is dense in B, and whose range lies 
in B. There is a solution-operator, E(t), which is supposed to have a bounded extension 
to all of B. Thus, if v(t,) = g and E(t,) = T, the initial-value problem, to determine 



STABILITY OF BOUNDED SOLUTIONS 421 

g from u, is well-posed; it has the solution 

(2) Tu = g. 

The form (I) has been used to discuss wave motion, heat transfer, neutron transport, 
and elastic vibration. 

By the final-value problem, we mean that of determining u = v(O) from g = v(t,) 
in a well-posed initial-value problem (1). The backward heat equation is of this 
type. It is an ill-posed problem, since the solutions are unstable. However, the back- 
ward wave equation is well-posed. Under certain general conditions, we will show 
that uniformly bounded solutions of the final-value problem are stable. 

We will give a commonly-met condition on A which ensures that Tz = 0 only 
if z = 0. Let there be a set of points f1, /2 in B* such that, for all w in the domain 
of A 

(3) (Aw, a.) = at(w, I.) (n = 1, 2, ) 

where al, a2, ' are certain scalars. Thus, the points fn are eigenvectors in the domain 
of A*. Assume that the If) are complete in B*, in the sense that 

(4) (z, n) =0 for all n only if z =0. 

For example, if B = L2[0, 1], and if A4(x) = A"(x), the second derivative of w= 

A(x), and if the domain of A consists of the functions #(x) with two continuous 
derivatives such that 4t(0)) = 0, then B B*, A = A*, and we may choose 

= sin nrx, a, 
2 

=-n27r2 

Then (4) states that the set { sin nirx) is complete in L2[0, 1]. 
If A satisfies the preceding condition, then Tz = 0 only if z 0. For let v(t) 

satisfy the initial-value problem (1) with v(O) = z. Now, for each Ins 
d 

(5) dt (vt), If,) = (Ar(0), f,) = an(v(t), n) (O < t ? tj) 

by the assumption (3). Therefore, for 0 ? t ? t, and for n = 1, 2, *.* 

(6) (6(t), fA) = (Z, fI) exp (ant). 

When t t,, we have v(t,) Tz 0, and hence (6) implies 

(7) 0? (Z. I,) (n = 1, 2, ). 

Now (4) implies z = 0. 
Applied to the preceding example, this argument implies the well-known unique- 

ness of solutions to the final-value problem for the heat equation s = pP . with 
boundary condition fp 0 for x- 0, r. If, more generally, 

A41(x) = (p(x)b'(x))' + q(x)4,(x) 

with p(x) > 0, and with p(x), p'(x), and q(x) continuous, the completeness of eigen- 
functions for Sturm-Liouville operators implies the uniqueness of solutions to the 
final-value problem for 

(8) a<p (x, t) = d (x) do) + q(x)p. 
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To ensure that TB is dense in B, it suffices to assume that eigenvectors w1, w2, ... 
whose finite linear combinations are dense in B. For then, if Aw, = dw,, we have 

n n 

(9) T y y1w = 'y, exp (3, t1)w, 

and the linear combinations (9) are dense in B. 
In summary, we have proved the following result: 
LEMMA. If A has eigenvectors wn whose finite linear combinations are dense in B, 

and if A* has eigenvectors f, which are complete in B*, then the well-posed initial-value 
problem (1) has a solution-operator, T, which maps B into a dense subset of B, with 
Tz = 0 only if z = 0. 

Theorem 1 now yields the following criterion for the stability of solutions of the 
terminal-value problem: 

THEOREM 2. Let the well-posed initial-value problem (1) be defined for a reflexive 
Banach space, B. Let Tun = gn (n = 1, 2, * * * ) where the initial values Un are uniformly 
bounded: I u.1 I< /. Let A satisfy the conditions of the lemma. Then the weak con- 
vergence of the final values, gn, implies the weak convergence of the initial values, un. 

The weak convergence of the initial values ensures the strong convergence of the 
vectors v,(t) for 0 < t < t1 if the solution operator E(t) is completely continuous for 
t > 0. This is true, for instance, for the heat equation (8) involving a general Sturm- 
Liouville operator, A. If a complete set of eigenvectors is the set of orthonormal 
functions wn- = sP(x), then the eigenvalues n tend to + co like a constant multiple 
of n2, and 

(10), E(t) S Yn(Pn(X) - yE./ e xp (-Ont)V,"(X). 
1 1 

Here we assume E '2 < co, and the convergence of the infinite series 'Yn(Pn(X) 
is understood in the mean-square sense. If the initial values ul, u2, have series 
representations 

(1 1) Uk = E CkOn(PnX) (k = 1,2, 
n-1 

and if 
co 

U = ZCn(n(X) 
n-1 

in L2, then weak convergence uk -- u is equivalent to the conditions 
co 

(12) 2n < c2 independent of k, 
nil 

(13) limck. = cn foreachfixedn. 
k-w 

Applying (10), we find, for t > 0, 

(14) vk(t) = E(t)Uk = Z Ykn exp (- 3tAo~n(x) 
n= I 
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SinceA, -- + o as n -* c, the conditions of weak convergence, (12) and (13), imply 
the strong convergence 

(15) lim IIE(t)uk - E(t)ull - 0 if t > 0. 
k-un 

This follows at once from the inequality 
co ~~~~~~~~~~~~2 

1 (.Ykn - Ay) exp (-I3^t)io,(x) 
n-i 

(16) 

i (kn -Yn) exp (-2o3t) + 2 exp (-2,3vt)(c + E 'n) 
n-i 

which holds for each N > 1. 
In this example, we are even able to deduce the pointwise convergence 

(17) pi(Xo, t) --+ (xo, t) as k -+ if t > 0. 

For fixed x0 and t > 0, the real number <Pk(XO, t) is the inner product of the vector 
UkA; =k(x, 0) with the vector in LC whose Fourier series is 

co 

(18) s = E [(p.(Xo) exp (- nt)]An(x) 
n-1 

where, since to > 0, 

(19) HIs1I2 E 2pn(xo) exp (_i30t)I2 K 
n-i 

(Here we have used the result E (V2,(xo) K Xc from Sturm-Liouville theory.) Now 
the weak convergence uk - u yields 

(20) (uk, s) -+(u, s) as k - o 

which is the asserted pointwise convergence (17). 
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